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Welcome back, everyone.
Today, we move one step further in our journey — from the Fourier series to the 
Fourier transform. This is a big transition, and it’s a powerful one. So, what 
exactly changes when we move from a series to a transform? That’s what we’ll 
uncover together in this lecture.
Before we begin, I want to emphasize something important. You need to have a 
solid understanding of the Fourier series first. The transform builds directly 
on those ideas. If you’re still feeling confused about Fourier series — don’t 
worry — but do take action. You can interact with ChatGPT, discuss with your 
classmates, review the lecture materials, and review the chapter I wrote. You 
can also search online for different explanations or examples that make more 
sense to you. Group discussions can be constructive.
Fourier analysis is fundamental — not just for this course, but for 
understanding medical imaging technologies down the line. I want to make sure no 
one gets left behind here. Because if you miss this foundation, the rest of the 
material will feel considerably harder.
Alright — let’s dive in.
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Again, so this is our schedule. We are on schedule, so no problem.
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Now, let’s break things down to a very basic and powerful idea.
Suppose we have a function — let’s call it f of t — a one-dimensional function 
that varies over time. You can think of it as a smooth, continuous curve. That’s 
the usual way we look at functions.
But here’s a different perspective — instead of seeing f of t as one continuous 
piece, imagine it as a sum of impulses. Yes — a collection of sharp, narrow 
spikes, each carrying a little bit of information about the function at a 
specific time.
This is where the Dirac delta function, or delta for short, comes in. From 
linear systems theory, we know that any continuous function can be viewed as the 
convolution of that function with a train of delta functions.
What does this mean, intuitively? It means you can imagine slicing the original 
function into many tiny segments. Each segment becomes a small impulse — and 
when you add up all those impulses, you reconstruct the full function.
So, this is one way to represent a function — not as a smooth line, but as a 
weighted sum of sharp impulses. And this idea is going to be very helpful as we 
move toward the Fourier transform.
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Now let’s look at the same function from a completely different angle — instead 
of seeing it as a sum of impulses, imagine it as a sum of waves.
Here, we’re working with a periodic function — meaning it repeats itself over 
time. Let’s just focus on one complete cycle of that function. The rest are just 
copies.
The key idea is this: a periodic function like this can be broken down into many 
sine and cosine waves — we call these sinusoidal components. These waves can 
vary in three ways: their frequency, which tells us how fast they oscillate; 
their amplitude, which tells us how tall they are; and their phase, which tells 
us where each wave starts.
So what’s the trick? We want to find the right combination of amplitudes, 
frequencies, and phases — so that when we add up all these sine and cosine 
waves, we recover the original function.
At first, this might sound abstract, but conceptually it’s not that difficult. 
You’re just looking at the same function in a different way.
Earlier, we saw a kind of particle view — slicing the function into sharp 
impulses. Now we’re seeing a wave view — smoothing it into oscillating signals.
And this wave-based view is the foundation for Fourier analysis.
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So now that we've talked about breaking a function into a sum of waves, let's 
formalize that idea using the real form of the Fourier series.



What we’re looking at here is just a mathematical way of saying: any periodic 
function f of t can be written as a combination of three types of components:
A constant term, called the DC component,
A sum of cosine terms,
And a sum of sine terms.
Each term has a different frequency and amplitude, depending on the value of n. 
The higher the value of n, the higher the frequency of that term.
So the general formula goes like this:
f of t equals a-zero over 2, plus the sum from n equals 1 to N of a-n times 
cosine of 2 pi n t, plus b-n times sine of 2 pi n t.
Now, where do these coefficients come from?
Well, we have formulas to compute them. That’s the trick!
To find a zero, you integrate f of t from 0 to 1.
To find a-n, you multiply f of t with cosine of 2 pi n t, and integrate.
And for b-n, you do the same, but with sine of 2 pi n t.
So if I give you any function f of t, you just plug it into these formulas, do 
the math, and you get a set of numbers — the a’s and b’s. With those 
coefficients, you can then reconstruct the original function by summing all the 
sine and cosine waves.
As N gets larger — meaning you include more wave components — the reconstructed 
function becomes more and more accurate. In fact, when N approaches infinity, 
this series can represent the function exactly, under reasonable conditions.
Now here’s something deeper: These sine and cosine functions form an orthonormal 
basis — that’s just a fancy way of saying they’re like the X, Y, and Z axes in 
3D space, but in an infinite-dimensional space of functions.
So geometrically, what you're doing is projecting the function f of t onto each 
basis function — kind of like breaking a 3D vector into its X, Y, and Z 
components. Except here, we’re breaking a function into sine, cosine, and 
constant components.
If this all feels a bit abstract, don’t worry. The key takeaway is:#We’re 
representing a function as a sum of waves.#And we have formulas that let us find 
the right weights — or coefficients — for those waves.
That’s what the Fourier series, in its real form, is all about.
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So far, we've talked about the real form of the Fourier series, which uses sine 
and cosine functions. But there's another way to write the same idea — in what 
we call the complex form.
Now don’t be alarmed by the word “complex.” This version is mathematically 
equivalent to the real form — it's just more compact and elegant.
Instead of separating things into sines and cosines, we use complex exponentials 
— specifically, e to the power of 2 pi i n t. That’s Euler’s formula at work.
In this form, the function f of t is expressed as a sum — from n equals minus N 
to N — of coefficients c n multiplied by e to the 2 pi i n t.
And just like before, we need to figure out those coefficients. So how do we 
compute c n?
We use this formula:#c n equals the integral from 0 to 1 of e to the power minus 
2 pi i n t times f of t, with respect to t.
This is essentially an inner product — projecting your function onto the 
exponential basis function e to the power minus 2 pi i n t.
In my book, I like to write the imaginary unit i in front — as in minus i 2 pi n 
t — but it’s just a matter of notation. The meaning stays the same.
At the bottom here, you see the same formula written slightly differently — as 
f-hat of n — which is just another way of naming the coefficient.
Now, throughout this slide, we’re assuming that the function is periodic with 
unit period — meaning it repeats every interval from 0 to 1. If the function 
instead repeats from, say, 100 to 101, it’s still the same picture — just 
shifted.
So the complex form doesn't change the logic — it simply gives us a cleaner, 
more powerful way to write and manipulate Fourier series, especially when we 
move into Fourier transforms.
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So far, we’ve been working under a simple assumption — that the function we’re 



analyzing has a unit period. That means the function repeats every one unit of 
time, say, from 0 to 1.
But what if the period is something else — like 5, or 100? That’s what we’re 
covering here.
This slide shows how to handle a function with an arbitrary period, which we’ll 
call capital T. The good news is: the concept stays exactly the same — we’re 
still breaking the function into complex exponential components — but we just 
adjust the formulas a bit.
Here’s how the function f of t is now written:
f of t equals the sum from n equals minus infinity to infinity of c n times e to 
the power i 2 pi n t over T.
So you can think of this as a generalized version of the complex Fourier series.
And to compute the coefficient c n, we use the formula:
c n equals 1 over capital T, times the integral from minus T over 2 to T over 2 
of e to the power minus i 2 pi n t over T, which is multiplied by f of t, with 
respect to t.
Now let me break that down for you:
The exponential term — that’s your harmonic basis function, adjusted for the new 
period.
t over T is just a way to normalize time, so that we’re still operating over a 
standard interval.
The 1 over T in front is a scaling factor that makes everything work out 
correctly.
And the range of integration — from minus T over 2 to plus T over 2 — gives us a 
symmetric interval, which is often more convenient for analysis.
So, whether your period is 1, 10, or any other positive number, you simply use T 
in place of 1 and apply this formula. You’re still summing wave-like components 
— just stretched or compressed in time depending on the period.
Now here’s something helpful:#If you set T equals 1, this formula reduces back 
to the unit-period version we saw before. So you only need to remember this 
general form — and adjust T as needed.
In practice, the real form of the Fourier series is nice because it gives you a 
clear geometric picture — sines, cosines, and their amplitudes.#The complex 
form, like the one we see here, is more compact and elegant, especially when we 
move into transforms. It just takes a little abstract thinking in complex space.
So this wraps up our review of Fourier series — both real and complex — and now 
we’re ready to move on to the Fourier transform itself.
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By now, you might be wondering — why go through all this? Why even bother with 
the Fourier transform?
Well, let’s take a step back and think with common sense.
We started with a function — f of t — and we’ve looked at several ways to 
represent it. First, we saw it as a sum of impulses. Then, as a sum of waves — 
sines and cosines. Each of these views gives us a different lens to understand 
the same signal.
And that’s the point. Multiple perspectives give us more flexibility and smarter 
strategies for solving problems.
In real life, when you're facing a tough task, what do you usually do? You don’t 
try to tackle it head-on in the hardest way possible. You try to simplify it. 
You look for shortcuts. You use tools that make the problem easier.
That’s exactly what we’re doing with Fourier analysis.
Sometimes a problem looks really messy in the time domain — but if we switch to 
the Fourier domain, that same problem might become simple and elegant.
Here’s an analogy: imagine trying to do multiplication using Roman numerals. 
It’s a nightmare! But switch to Arabic numerals — or even binary — and suddenly, 
multiplication becomes easy. Especially for computers.
So choosing the right representation can make all the difference.
That’s what the Fourier transform is all about. It gives us a new way to look at 
a function — in terms of its frequency content — and often, that view makes 
analysis or computation much simpler.
There’s also a deeper strategy here:#Sometimes a function is complicated as a 
whole, but if we break it down into smaller, simpler parts, we can understand it 
better.



This is the classic divide and conquer approach.
We’ve already seen this with impulse decomposition. If you know how a system 
responds to a single impulse, then you can figure out how it will respond to a 
complicated signal — just by adding up the responses to each impulse.
The same logic applies to sine waves — if you understand how a system reacts to 
one sine wave, and you can express a signal as a sum of sine waves, then you’ve 
got the whole picture.
So, in short, Fourier analysis follows two powerful principles:
Use simple tools to solve complex problems.
Divide big problems into small, manageable pieces.
And that’s what we’re building toward with the Fourier transform.

slide9:
So now that we’ve covered the Fourier series — and we’ve seen why changing 
representations can make problems easier — it’s time to dive into the main topic 
of today’s lecture: the Fourier transform.
This corresponds to Chapter 4 in the book draft I shared with you. I do plan to 
revise it soon — polish up some explanations and fix a few typos — and I’ll send 
you the updated version once it’s ready.
Here’s how we’ll structure today’s lecture:
First, in Section 1, we’ll talk about how the Fourier transform is derived from 
the Fourier series. This transition is logical and elegant, and it gives us a 
solid foundation for everything that follows.
Then, in Section 2, we’ll explore some of the most important properties of the 
Fourier transform. These properties aren’t just mathematical curiosities — 
they’re practical tools used in signal processing, imaging, and many other 
fields.
After that, in Section 3, we’ll extend our thinking to higher dimensions. I’ll 
show you how the Fourier transform applies not just to one-dimensional signals, 
but also to images — and beyond. I’ll even walk you through an example where 
converting an image to the Fourier domain makes it easy to remove noise.
Finally, in Section 4, we’ll wrap things up with a few remarks and reflections.
So by the end of this lecture, you should not only understand the mathematical 
structure of the Fourier transform, but also see its real-world value, 
especially in areas like medical imaging.
Let’s get started with the first section: the derivation of the Fourier 
transform.
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You’ve actually seen this slide before — it’s a summary of what we covered in 
the last lecture, and now it serves as our starting point for deriving the 
Fourier transform.
Let’s quickly revisit the main idea:
We said that any arbitrary function can be treated as if it were periodic, 
defined over a fixed interval. In this case, we’re looking at a symmetric 
interval — from minus capital T over 2 to plus capital T over 2.
Within this interval, we can represent the function f of t as a sum of 
sinusoidal components — specifically, complex exponentials of the form:
e to the power i times 2 pi n, times t over T.
This is a compact way to write sine and cosine waves using Euler’s formula. So 
even though the expression looks complex, it represents a mix of sine and cosine 
waves at various frequencies, where n runs from minus infinity to plus infinity.
And just like before, each component has a corresponding coefficient, which 
tells us how much of that wave appears in the overall function.
To compute the coefficient c n, we use the formula at the bottom:
c n equals 1 over capital T, times the integral from minus T over 2 to T over 2, 
of e to the minus i 2 pi n t over T, times f of t, with respect to t.
This is just an inner product — projecting f of t onto a complex exponential 
basis function. That projection gives us the weight, or the contribution, of 
that particular frequency.
So, this slide wraps up all the key ideas from the Fourier series — including:
Treating functions as periodic,
Expressing them with complex exponentials,
And computing coefficients through integration.



With this solid foundation in place, we’re now ready to take the next step — and 
derive the Fourier transform, which generalizes everything we’ve done so far.
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Alright — now let’s take the next step together.
Earlier, we learned how to calculate the Fourier coefficient c n for a function 
with arbitrary period T. Now, we’re going to insert that expression for c n 
directly into the Fourier series formula.
What happens when we do that?
Well, here’s what we get: we take the formula for c n — which is an integral — 
and plug it into the sum. So now, each term in the series contains an inner 
product multiplied by a complex exponential.
Notice this part out front: 1 over capital T. This shows up because we’re 
working over a general period T, not the unit interval. So we need to normalize 
— or average — over the full interval from minus T over 2 to plus T over 2.
This 1 over T acts like a scaling factor — a way of balancing the sum so that 
everything works out correctly.
Now look inside the brackets. What we’re really doing here is taking the inner 
product of two functions:
One is f of t,
And the other is the complex exponential e to the power minus i 2 pi n t over T.
You multiply them together point by point, and then integrate over the interval. 
That’s what we mean by an inner product in this context.
And we’re doing this for many values of n, both negative and positive. So you 
can imagine we’re computing inner products at a whole series of frequency points 
— where each frequency is n divided by T.
As T becomes large, the spacing between these frequencies — that is, the 
difference between one n over T and the next — becomes smaller and smaller. 
Eventually, this sum will start to resemble an integral over a continuous range 
of frequencies, and that’s the key idea behind the Fourier transform.
So, to summarize:#We’re inserting the formula for c n, and that gives us a 
series of inner products across many frequencies, with a spacing of delta u 
equals 1 over T. This step sets us up perfectly to move from a discrete sum to a 
continuous integral — which is what the Fourier transform is all about.
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Now to understand that last idea more clearly, let’s take a look at this 
picture.
What we’re doing here is sampling inner products at many frequency points. Each 
of these points corresponds to a value of n divided by capital T — that is, u 
equals n over T. As n varies from negative to positive integers, you get a 
collection of frequency points spread along the u-axis, which represents 
frequency.
When n equals 0, you’re at the DC component — the zero-frequency term. When n 
equals 1, you get one frequency point. When n equals minus 1, you get another. 
And so on.
So you can imagine each vertical line here as one of those frequency points — u 
equals n over T — spread across the axis.
Now here’s the key idea:#If we let the period T become very large, then the 
range from minus T over 2 to plus T over 2 will grow wider and wider. In fact, 
in the limit as T goes to infinity, that interval covers the entire frequency 
axis — from minus infinity to plus infinity.
That’s what we mean by dense sampling of frequency.
As T increases, the spacing between neighboring frequencies gets smaller and 
smaller. Mathematically, the spacing — which we call delta u — becomes 1 over 
capital T. So the gap between u equals to n over T and u equals to (n plus 1) 
over T shrinks.
Eventually, these discrete frequency samples get so close together that they 
begin to form a continuous spectrum.
And that’s the magic.
We started with a periodic function, which gives us discrete frequencies. But as 
the period stretches toward infinity, the function becomes non-periodic, and the 
discrete frequency points turn into a continuous frequency range.
So, what is a non-periodic function in this view?



It’s just a periodic function with an infinitely long period. Anything that 
happens beyond that infinite window doesn’t affect what we see — and that’s how 
we bridge from the Fourier series to the Fourier transform.
This slide captures the big picture:
Discrete frequencies spaced by 1 over T,
Becoming densely packed as T increases,
And ultimately forming a continuous frequency axis.
That’s our gateway into the Fourier transform.
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Alright — this slide is the heart of the lecture. Take a moment to follow this 
carefully, because here is where we formally derive the Fourier transform — and 
also see how we can recover the original function using the inverse transform.
Let’s begin at the top.
We’re starting with our expression for f of t, written as a Fourier series. We 
substitute the expression for c over n — the Fourier coefficient — right into 
this formula.
Now remember, c over n contains an integral — and it includes a 1 over T term 
out front. Since T is constant, we pull it out of the sum.
At this point, we apply a key idea we introduced earlier:#Let T become very 
large, so large that we’re effectively dealing with a non-periodic function. 
When T approaches infinity, the spacing between the frequency samples, delta u 
equals to 1 over T, becomes tiny — almost zero.
So what happens?
Instead of summing over discrete frequencies, we move to a continuous frequency 
variable, which we call u — where u equals n divided by T.
This transition lets us replace the sum with an integral.
So now we’ve gone from a sum of discrete terms to an integral over a continuous 
range of frequencies. The inner product becomes f-hat of u, the Fourier 
transform of f of t. And the exponential term becomes e to the power i 2 pi u t 
— our new kernel in the transform.
Let’s pause here and look at the final expression.
You’ll notice two things:
First, to compute f-hat of u, the Fourier transform, we integrate f of t 
multiplied by e to the minus i 2 pi u t. That’s the forward transform — moving 
from the time domain to the frequency domain.
Second, to reconstruct f of t, we take f-hat of u, multiply it by e to the power 
i 2 pi u t, and integrate over all u. That’s the inverse transform — bringing us 
back from frequency to time.
So these two formulas — the forward and inverse transforms — are the foundation 
of the Fourier transform.
They let us take a non-periodic function and decompose it into a continuous 
spectrum of frequencies. And then, using that spectrum, we can reconstruct the 
original function with complete accuracy.
This is what makes the Fourier transform so powerful — not just mathematically, 
but also practically — in fields like signal processing, image analysis, and, of 
course, medical imaging.
From this point forward, we’re now working with non-periodic functions, and 
we’ve fully transitioned from Fourier series to the Fourier transform.
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Now let’s bring things down to earth a bit and look at a concrete example — 
something visual, something simple.
This function right here is called the rectangular function, or sometimes the 
gate function. You’ll also see it written as pi of t.
And as you can see from the graph — it really does look like a gate.
Let’s break it down:
The value of the function is 1 when the absolute value of t is less than one-
half — that is, between minus one-half and plus one-half.
Outside that interval, the function drops to zero.
So, the entire “on” region is one unit wide, and the height is 1, which means 
the area under the curve is also 1.
This function is simple, but it’s also very important — and we’re going to use 
it often in later examples.



Now here’s the key point:#This is a non-periodic function.
And back when we only had Fourier series — which apply to periodic functions — 
we couldn’t directly express this kind of shape using sines and cosines.
But now, thanks to the Fourier transform, we can.
We’re no longer limited to repeating signals. We can now handle functions like 
this — compact, finite, non-repeating — and still express them in terms of 
sinusoidal components, just over a continuous range of frequencies.
So this rectangular function — although it’s simple — gives us a great 
opportunity to visualize the power of the Fourier transform.
Let’s keep going and see what it looks like in the frequency domain.
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Now let’s do something clever.
We just looked at the gate function, or rectangular function, which is not 
periodic. And because it’s non-periodic, we can't represent it using a Fourier 
series — only the Fourier transform works in that case.
But what if we wanted to use Fourier series?#Well — we can! We just need to make 
the function periodic.
And here’s how we do it: we take that single gate function — and simply repeat 
it over and over again, at regular intervals. This is called periodization.
In this slide, the original gate function is being repeated with a period of 16. 
So now you’ve got a train of rectangular pulses, equally spaced along the time 
axis.
Visually, you can think of it like flipping a light switch on for a second — and 
then leaving it off for a long time — then flipping it on again — and repeating 
that process over and over.
The key is: now we’ve created a periodic signal.
And because it’s periodic, we can now apply Fourier series to analyze it — just 
like we did before.
All you need to do is plug this periodic function into the Fourier series 
formulas, and you’ll get a representation as a sum of sine and cosine waves — or 
complex exponentials.
This kind of construction is very useful. In fact, it shows up in engineering 
and physics quite a bit — especially in systems that switch on and off 
repeatedly. Sometimes you’ll hear people talk about the duty cycle, which refers 
to how much of each period the function is “on” versus “off.”
So again — by making the function periodic, we unlock the power of the Fourier 
series.
And soon, we’ll compare this with what happens when we go back to the non-
periodic version, and apply the Fourier transform instead.
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Now, let’s visualize the powerful idea we’ve been building toward — how we move 
from Fourier series to the Fourier transform.
What you see here is the frequency-domain representation of the rectangular 
function as we increase the period of its periodic extension.
Let’s start at the top left.
These vertical lines represent the Fourier coefficients — discrete spikes at 
different frequency points. These are the outputs of the Fourier series.
You’ve got:
A DC component at zero frequency,
The first harmonic,
The second harmonic, and so on.
Each coefficient is calculated using the formulas we saw earlier. And because 
the original function is real-valued, these coefficients appear symmetrically 
around zero when using the complex form.
Now — here’s the trick:#We begin to increase the period T of the function.
That means we’re spacing the rectangular pulses farther apart in the time 
domain. And in the frequency domain, this has a very important effect:#The 
spacing between the Fourier components, which is 1 over T, becomes smaller and 
smaller.
You can see this happening in the middle image — the spikes begin to cluster 
more tightly. The frequency axis, labeled u equals n divided by T, gets more 
densely sampled.



And as we continue increasing T — moving to the bottom image — the spacing 
becomes infinitesimally small. At this point, we’re no longer looking at a 
discrete spectrum. We now have a continuous curve.
That’s the moment when we’ve transitioned from the Fourier series to the Fourier 
transform.
So here’s the big picture:
When a function is periodic, we get a discrete Fourier spectrum.
But when the function becomes non-periodic, by letting the period go to 
infinity, we end up with a continuous Fourier spectrum.
This spectrum is smooth and continuous — and it tells us how much of each 
frequency exists in the original signal.
So this slide gives us the geometrical insight — the visual transition — from 
the world of periodic signals and discrete spectra, to the world of non-periodic 
signals and continuous spectra.
And this is what the Fourier transform captures so beautifully.
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Now that we’ve built up all the ideas step by step, let’s bring it all together 
into one elegant concept — the Fourier transform pair.
What you see on this slide captures the very heart of Fourier analysis.
Let’s begin with the first equation, which is the forward Fourier 
transform.#Suppose you have a signal in the time domain, which we’ll call f of 
t. The goal is to understand how much of each frequency is present in that 
signal.
So how do we do that?
We project f of t onto a family of complex exponential functions. These 
functions look like e to the power minus i, 2 pi, u, t, where u is the 
frequency. This projection acts like an inner product, telling us how strongly f 
of t resonates with each frequency component.
When we integrate this product across all time, we obtain f hat of u, also 
called the frequency spectrum or the Fourier transform of f of t.
So this first equation maps the signal from the time domain to the frequency 
domain.
Now look at the second equation. This is the inverse Fourier transform.
Here, we take all those frequency components — that is, each f hat of u — and 
multiply them by their corresponding complex exponential, this time e to the 
power i, two pi, u, t. Then, we integrate over all frequencies.
And what do we get?#We reconstruct the original signal — f of t — exactly.
So in summary, the forward transform takes you from time to frequency, and the 
inverse transform brings you back from frequency to time.#That’s the two-way 
mapping shown symbolically at the bottom:#f of t goes to f hat of u, and back 
again.
Now, a few mathematical notes to make this complete:
First — this transform assumes that f of t is square-integrable, meaning if you 
square the function and integrate it over all time, the total is finite. This 
ensures convergence and makes the math work properly.
Second — even though we’re dealing with a non-periodic function here, the idea 
still grows out of the Fourier series. Remember what happens when the period of 
a function becomes very large — the discrete set of frequency components becomes 
a continuous spectrum. The Fourier transform is essentially the limit of the 
Fourier series as the period tends to infinity.
And finally — here’s a nice geometric interpretation.
Think of projecting a 3D vector onto the x, y, and z axes.
In the same way, when we apply the Fourier transform, we’re projecting our 
function onto an infinite set of sine and cosine waves — or more precisely, 
complex exponentials. Each frequency contributes a tiny slice of the original 
signal.#And by adding all those slices back together — using integration — we 
reconstruct the full signal.
This isn’t just a clever trick.#It’s one of the most powerful tools in all of 
engineering, physics, and mathematics.#It lets us analyze and manipulate signals 
in both time and frequency — without losing any information.
With this foundational concept in place, we’re ready to explore some practical 
examples and dive deeper into the properties of the Fourier transform.
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Let’s go through a concrete example — the Fourier transform of the gate 
function, also called the rectangular function.
We’ve already seen this function earlier. It’s a flat function that equals 1 
when the time variable t is between minus one-half and plus one-half, and it’s 
zero everywhere else. So it looks like a rectangle centered at zero.
Now, we want to find its Fourier transform. To do that, we apply the definition.
We take the integral of the original function multiplied by a complex 
exponential — that’s e to the power negative i 2 pi u t — and we integrate over 
all time.
But since the gate function is zero outside the interval from minus one-half to 
plus one-half, we only need to integrate over that range.
So the integral becomes: from minus one-half to plus one-half of e to the 
negative i 2 pi u t, with respect to t.
This is a standard exponential integral. When you solve it, you get the function 
sine of pi u, divided by pi u.
This result is known as the sinc function and it shows up everywhere in signal 
processing and imaging.
So here’s what we’ve found: a rectangle in time turns into a sinc wave in 
frequency. That’s a beautiful and very useful result.
Now, what if we stretch the gate to make it wider?
Let’s say the gate equals 1 from minus capital T over 2 to plus T over 2, and 
zero elsewhere. Then the Fourier transform becomes a scaled version of the same 
sinc function — it just shrinks or stretches based on the value of T.
So you could try computing it directly, or you could use a shortcut — the 
scaling property of the Fourier transform, which we’ll talk about soon.
But the key point is this: the rectangular function in time gives us a sinc 
function in frequency.
And here’s one final note. You might wonder what happens when u equals zero, 
because both the top and bottom become zero. But don’t worry — if you take the 
limit using calculus, it turns out the value is exactly 1. So the function is 
smooth at the center.
We’ll use this gate-to-sinc pair often, so keep it in mind as we move forward.
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Now let’s take a look at the actual shape of the sinc function — the one we just 
derived from the rectangular gate.
What you see here is the graph of that function — sinc of u — which is defined 
as sine of pi times u, divided by pi times u.
It has a smooth, wave-like shape. The peak is right at the center — at u equals 
zero — and the height there is exactly 1.
As you move away from the center in either direction, the function oscillates — 
it goes up and down — but the peaks get smaller and smaller.
That’s because the sine wave in the numerator keeps swinging, but the 
denominator grows, so the overall value shrinks.
This is the signature look of the sinc function — one strong central lobe and 
then smaller and smaller ripples on the sides.
So this is the frequency domain representation of a simple gate in time.
And just to recap — this sinc function came from a rectangular gate function of 
width 1.
If we use a wider gate — let’s say the width is capital T instead of 1 — then 
the sinc function would stretch out horizontally. That is, the ripples would 
become narrower in frequency, because time and frequency are inversely related.
We’ll explore that in more detail when we talk about the scaling property. But 
for now, just remember: a narrow gate in time gives a wide sinc in frequency. A 
wide gate in time gives a narrow sinc.
This is a key idea we’ll return to again and again.
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Now let’s move on to our second example — the triangle function.
This function, often called the triangular function, is shaped just like its 
name suggests — a triangle. It peaks at 1 when x equals 0, and then it decreases 
linearly to zero as x moves out to minus 1 and plus 1. Outside of that range, 
the value is zero.



Mathematically, it’s defined like this: one minus the absolute value of x when x 
is between negative 1 and 1, and zero otherwise.
So what we want to do now is find its Fourier transform.
In other words, we want to express this smooth, non-periodic triangular function 
as a combination of infinitely many sinusoidal waves — just like we did with the 
gate function.
We’ll add up all these waves — each with a different frequency and amplitude — 
and by doing so, we’ll be able to reconstruct this triangle shape exactly.
That’s the idea behind Fourier transform: take a function, no matter how it 
looks, and rewrite it as a sum of wave components. Each component carries part 
of the shape — and when you combine them all, you get the original back.
Let’s see what that looks like in this case.
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Let’s now take a look at the result of the Fourier transform of the triangle 
function.
If we go through the steps — plugging the triangle function into the Fourier 
transform formula and carrying out the integration — we end up with a very 
elegant result. The Fourier transform turns out to be the square of the sinc 
function.
That is, we get sinc squared.
You might remember that the Fourier transform of the gate function gave us a 
sinc function. So this result — sinc squared — is not just a coincidence.
There’s actually a deeper reason behind it.
It’s related to an operation called convolution. We saw this in the context of 
the Fourier series, and we’ll explore it again in more depth when we talk about 
properties of the Fourier transform.
But the key takeaway here is this: the triangle function is, in a way, the 
convolution of two gate functions. And in the frequency domain, convolution in 
time corresponds to multiplication in frequency. That’s why the sinc function — 
from the gate — becomes sinc squared for the triangle.
And down at the bottom, we can see the graph of sinc squared. It has the same 
overall shape as sinc — a central peak and decaying ripples — but now the 
oscillations are all positive and fall off more smoothly.
So, this example shows another beautiful connection between shapes in the time 
domain and their patterns in the frequency domain.
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Let’s now take a look at a few more examples of Fourier transform pairs — some 
of them elegant, some of them a bit more abstract.
First, we have the Gaussian function. In the time domain, it’s written as e to 
the power negative pi t squared. This is the familiar bell-shaped curve — 
smooth, centered, and decaying quickly. What’s remarkable is that its Fourier 
transform is also a Gaussian — e to the power negative pi u squared. The shape 
stays the same, just transformed into the frequency domain. The Gaussian is one 
of the few functions that’s unchanged, except for scaling — we say it’s self-
Fourier.
Next, let’s consider a constant function — just a flat value c across time. Now, 
technically this function is not square-integrable, meaning we can’t just apply 
the Fourier transform in the usual way. But in a generalized sense, we can still 
assign it a meaning. And it turns out the Fourier transform of a constant is a 
scaled delta function — specifically, c times delta of u. This makes intuitive 
sense: a constant signal has no frequency variation, so all its energy is 
concentrated at zero frequency.
And finally, look at this interesting example: the shifted delta function delta 
of t minus a. If you perform the Fourier transform of this, you get a complex 
exponential — e to the power minus i 2 pi a u. This tells us that shifting a 
delta function in time introduces a phase shift in frequency. And that phase 
shift depends on the amount of translation — the value a — and also on the 
frequency u.
Now, I should point out — when you’re working with generalized functions like 
constants and delta functions, the usual rules don’t always apply directly. 
These are not square-integrable functions. So we use the tools of distribution 
theory to handle them more rigorously. If you’re curious, I explain this in more 



detail in the book chapter.
But for now, just keep in mind — even with these edge cases, the idea of 
expressing a signal in terms of wave components still holds.
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Now that we’ve gone through several examples, let’s take a moment to highlight 
some core properties of the Fourier transform — the features that make it such a 
powerful and elegant analytical tool.
We begin with linearity. If you combine two functions, say f and g, using 
constants a and b — meaning you form "a times f plus b times g" — then the 
Fourier transform of that sum is simply "a times the transform of f plus b times 
the transform of g." This reflects the principle of superposition, which is 
central to all linear systems.
Next is the time-shifting property. If you shift a function in time — let’s say 
you move it by x naught — then in the frequency domain, the transform stays the 
same in shape but gets multiplied by a complex exponential factor. Specifically, 
it’s multiplied by e to the power minus i 2 pi x naught u. So shifting in time 
introduces a phase shift in frequency.
Now let’s flip that idea — this is called modulation. If you multiply a function 
in the time domain by a complex exponential, then you shift its frequency 
content. So time-domain modulation causes a translation in the frequency domain.
Another important concept is scaling. If you compress or stretch a function in 
time — say, you use f of a t — then the frequency representation stretches or 
compresses in the opposite way. And the result is scaled by one over the 
absolute value of a. So if the time signal gets narrower, the spectrum spreads 
out.
We also have conjugation. If you take the complex conjugate of a function, then 
its Fourier transform reflects across the frequency axis — that is, the 
transform at minus u becomes the conjugate of the transform at u.
And finally, if the original function is real-valued, its Fourier transform has 
Hermitian symmetry. That means the spectrum is symmetric in a complex-conjugate 
sense.
Each of these properties gives us deeper insight into how signals behave across 
time and frequency. We’ll explore them in more detail as we continue — but for 
now, keep these tools in mind. They’ll help you decode and design systems with 
much greater clarity.
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Let's look into more detail. Okay, the first linearity. So this is just, again, 
this part copied from the Stanford textbook. So you have a function f and g.
There are Fourier transformations. So you have Fourier transformation. You have 
this summation, the summation of the original function.
Then you perform Fourier transformation. The result is the same as the summation 
of the Fourier transformation of f and the Fourier transformation of g. So this 
is additivity. So in the system, linear system lecture, we explain that.
How about the scaling or homogeneity? So if f is scaled by alpha, then we 
perform Fourier transform. That's the same as performing the Fourier transform 
of f. Then you scale the result by the same scaling factor. So you can verify 
these two properties according to the formula by defining the Fourier transform. 
So you can just see here, just as an example, you show additivity. And you can 
similarly show the scaling property.

slide25:
Now let’s look at another important idea in Fourier analysis — the shift 
property, also called the translation property.
This property explains what happens when we shift a function in time. Suppose we 
have a function, f of t, and we shift it by some constant b. That means our new 
function is f of t minus b. So what happens to its Fourier transform?
The answer is: the shape of the spectrum stays the same, but we multiply it by a 
phase factor. Specifically, we multiply it by e to the power minus 2 pi i s b. 
In other words, shifting the function in time causes a rotation in the phase of 
the frequency spectrum.
Let’s go through why that’s true.
We start with the definition of the Fourier transform of f of t minus b. Inside 



the integral, we make a substitution: we let u equal t minus b. That’s just a 
change of variable — and it doesn’t affect the limits of the integral, which 
still go from negative infinity to positive infinity.
Now, when we rewrite the integral in terms of u, something interesting happens. 
The exponential term splits into two parts. One part depends on u, and the other 
depends on b. The part with b is just a constant, so we can pull it outside the 
integral.
What remains inside is the same integral we started with — the Fourier transform 
of the original function, f of t.
So in the end, we have the original spectrum, multiplied by this exponential 
phase term.
That’s the core idea of the shift property:#When you shift a function in time, 
it introduces a phase shift in the frequency domain.
This is an extremely useful result when working with signals that are delayed or 
moved in time — it tells you exactly how the spectrum changes, and helps 
preserve the full mathematical relationship between time and frequency.
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Let’s take a closer look at the scaling property of the Fourier transform.
Here’s the idea. Suppose we have a function, f of t. And now, instead of f of t, 
we look at f of a times t, where a is just some constant — not zero.
We’re changing the time scale. The question is: what happens to its Fourier 
transform?
Well, this depends on whether a is positive or negative. But in both cases, 
something interesting happens.
First, let’s say a is greater than zero.
We plug f of a t into the Fourier transform formula. If you do the math — which 
involves changing variables and rearranging terms — you end up with this:
The Fourier transform of f of a t becomes#one divided by a, times F of s divided 
by a.
So what does that mean?
If we stretch the function in time — that is, make it slower — its frequency 
content gets compressed.#And if we squeeze it in time — make it faster — the 
frequency content stretches out.
Now, what if a is less than zero?
In that case, the same formula still works, but with a minus sign that comes 
from flipping the limits of integration.
So we just take the absolute value of a, and the final result becomes:
The Fourier transform of f of a t equals#one over the absolute value of a, times 
F of s over a.
So in short:#Scaling in time causes the opposite effect in frequency.#That’s the 
scaling property.
And this is one more way to see how time and frequency are tightly connected in 
the Fourier world.
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So now, let’s bring this scaling idea to life with a visual example.
Take a look at the top plot. This shows different versions of a triangular 
function — blue, orange, and green. They all have the same shape, but different 
widths.
The blue triangle is the narrowest.#The orange one is a little wider.#And the 
green one is the widest of all.
Now, let’s look at what happens in the frequency domain — shown in the bottom 
plot.
Here’s the key idea:#When the function gets wider in time, its frequency content 
gets narrower.
You can see that clearly:
The narrow blue triangle has the widest Fourier transform — that’s the blue 
curve in the bottom plot.
The medium-width orange triangle gives a more focused frequency response — 
that’s the orange curve.
And the wide green triangle gives a sharp, tall peak in the frequency domain — 
the green curve below.
This is the heart of the scaling property.#Wider in time means tighter in 



frequency, and vice versa.
It’s a kind of duality — as if time and frequency are pulling on opposite ends 
of a rope.
And as a special case, if you use a delta function — which is infinitely narrow 
in time — its Fourier transform becomes perfectly flat, spread across all 
frequencies.
On the other hand, a Gaussian function is balanced — it’s the only shape where 
both the time and frequency profiles remain Gaussian.
So visually, scaling is not just a math trick — it’s a powerful way to 
understand how functions behave in both domains.
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Now let’s talk about a beautiful and surprising property of the Fourier 
transform — its connection to derivatives.
Suppose we start with a function, f of t, and its Fourier transform is capital F 
of s.
Now you might ask:#What happens if we take the derivative of f — that is, f 
prime of t — and then perform the Fourier transform?
The answer is elegant:#Taking a derivative in time becomes multiplication in the 
frequency domain.
More precisely,#The Fourier transform of f ' of t is just 2 pi i s times the 
Fourier transform of f.#So again, taking a derivative becomes a simple 
multiplication — and the factor depends on frequency.
There’s also a second version of this rule:#If you take the derivative of the 
Fourier transform itself with respect to s,#That’s the same as applying -2 pi i 
t to f of t — and then transforming it.
So in summary:
Derivatives in one domain correspond to multiplications in the other domain.
And this duality works both ways — from time to frequency, or frequency to time.
This relationship is incredibly useful in practice, especially in physics and 
engineering, where differentiation often pops up in systems and signals.
And best of all, it’s not magic — you can prove this directly from the Fourier 
transform formula, just by carefully taking the derivative under the integral.
So this derivative property really adds to our collection of powerful tools in 
the Fourier toolbox.

slide29:
Now here's one of the most important Fourier transform pairs — the impulse 
train, also called the comb function.
Think of it this way:
We place delta functions at evenly spaced intervals — for example, every delta t 
along the time axis.#This gives us a repeating sequence of sharp spikes — like 
the teeth of a comb — so we call it a comb function in time.
Mathematically, we write this as the sum of delta of t minus n delta t, summed 
over all integers n.#That just means we have delta functions at 0, at delta t, 
at 2 delta t, and so on, going both directions.
Now here’s the key:#When we take the Fourier transform of this comb in time, 
what do we get?
Surprisingly, we get another comb — this time in the frequency domain.#But the 
spacing changes — instead of delta t, the spikes are now spaced by 1 over delta 
t.
So if we sample more tightly in time, the frequency comb spreads out.#And if we 
stretch out the spacing in time, the frequency spikes get closer together.
This is exactly the scaling property we saw earlier — a tight structure in one 
domain leads to a broad structure in the other.
Now you might be wondering — how do we handle all these delta functions?#They’re 
not ordinary functions — they’re distributions or generalized functions.#And 
we’re dealing with an infinite sum of them.
This touches on deeper mathematics — involving convergence and rigor — but for 
our purposes, this formula holds and is extremely useful.#We’ll come back to 
this paired comb concept again in the next lecture, especially when we talk 
about sampling theory and the Fourier series.
So just remember:#A comb in time transforms to a comb in frequency.#And their 
spacing is inversely related — one over the other.
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Let’s now talk about one of the most powerful tools in the Fourier world — the 
convolution theorem.
In plain terms, the convolution theorem says this:
Convolution in the time domain becomes multiplication in the frequency domain.
Let me say that again, but clearly:#If you have two functions — let’s call them 
f of t and g of t — and you convolve them together, then their Fourier transform 
is simply the product of their individual transforms.
So:#If the Fourier transform of f of t is capital F of s,#and the transform of g 
of t is capital G of s,#then the transform of f convolved with g is F of s times 
G of s.
That’s the core idea.
Now why does this matter?
Because convolution — though useful — is often hard to compute directly.#It 
involves flipping one function, shifting it, multiplying, and integrating. 
That’s a lot of work!
But thanks to this theorem, we can skip all that.#Instead, we go to the 
frequency domain, multiply two functions — much simpler — and then just come 
back to the time domain using an inverse transform.
Let’s walk through a concrete example.
Think about a gate function — also called a rectangular pulse. Its Fourier 
transform is a sinc function — which looks like a smooth wave with side ripples.
Now, if we take two gate functions and convolve them in time, we get a triangle 
function.
So what happens in the frequency domain?
Each gate becomes a sinc function. When we multiply the two sinc functions 
together, we get sinc squared.
That is — sinc of s times sinc of s gives you sinc squared of s.
So the triangle function — which was a convolution of two gates — has a Fourier 
transform equal to sinc squared.
That’s a beautiful result, and it all comes from the convolution theorem.
It also shows how Fourier analysis turns complicated operations into simpler 
ones, especially in engineering, signal processing, and physics.
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Now let’s take a moment to understand why the convolution theorem actually 
works. What’s the reasoning behind it?
So far, we've seen that the Fourier transform of the convolution of two 
functions — say, f of t and g of t — turns into a simple multiplication of their 
individual transforms.
But why is that true?
Let’s walk through the logic behind it, one step at a time.
We start with this:#Multiply the Fourier transform of f of t by the Fourier 
transform of g of t. That means you're multiplying two integrals. One for g of t 
times a complex exponential, and the other for f of x times the same kind of 
exponential — but with a different variable.
To combine them, we use different dummy variables inside the integrals — like t 
in one and x in the other — so they don't interfere. Then we combine them into a 
double integral.
Now we group the exponential terms. The two exponentials become a single 
exponential with t plus x in the exponent.
This sets up our key trick: we change variables. In the inner integral, let’s 
say#u equals t plus x. That means t equals u minus x, and since we're just 
changing variables inside an integral, the limits stay the same.
So now, what used to be g of t becomes g of u minus x, and the exponential 
becomes a function of u. This lets us express the entire inside of the integral 
in terms of u, and f of x stays outside.
At this point, we switch the order of integration — that’s allowed because the 
functions we’re working with are well-behaved. So now we’re integrating over u, 
with x nested inside.
What you get in the end is this:#You have e to the power minus 2 pi i s  u — 
that’s the same complex exponential from the Fourier formula — and it’s 
multiplied by the convolution of g and f at position u.



That’s the key. The inner integral has now become the convolution of g and f, 
evaluated at u.
So finally, this whole thing is just the Fourier transform of that convolution.
That’s the magic of it.
Multiplication in the Fourier domain really does correspond to convolution in 
the time domain — and now you’ve seen where it comes from.
Of course, these steps are dense, and I encourage you to go over them again 
slowly. Grab a coffee, sit back, and follow the substitutions. Each step follows 
cleanly from the last — and the full picture is quite elegant.
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So let’s take a step back and ask—why is convolution in the time domain 
equivalent to multiplication in the frequency domain?
To understand this, let’s think about a shift-invariant linear system. If you 
feed a sinusoidal signal into such a system, the output will also be sinusoidal. 
And—here’s the key—it will be at the same frequency. The system might change the 
amplitude or the phase, but it doesn’t generate new frequencies. That’s the 
hallmark of a shift-invariant, or time-invariant, linear system.
This leads to a deep and beautiful conclusion. If sinusoidal signals are 
preserved in shape and frequency, then the effect of the system on each 
frequency component can be described by a single number—just a scaling factor 
that depends on frequency.
So, imagine you take any general signal, and you decompose it into a sum of 
sinusoidal components. The system acts on each component individually, scaling 
each one by a different amount. That’s exactly what multiplication looks like in 
the Fourier domain. Each frequency is being multiplied by its own gain factor.
That’s why convolution in the time domain turns into multiplication in the 
frequency domain.
Now, here's something important: this only works because of that special 
property of sinusoids. Among all functions, only sinusoids maintain their shape 
when passing through a shift-invariant linear system. Delta functions, for 
instance, don’t behave that way—they get transformed into something entirely 
different. But a cosine remains a cosine. A sine remains a sine. Just possibly 
scaled or phase-shifted.
And this is what makes the Fourier transform so unique. It’s the only transform 
for which the convolution theorem holds—because only sinusoids have this 
invariance.
You might wonder—could we define a similar convolution theorem using other 
transforms, like wavelet transforms or Hadamard transforms? The answer is no. 
Those basis functions don’t have this shape-preserving property under linear 
shift-invariant systems. So the convolution theorem doesn’t hold for them.
Now if you’re curious, you can actually find some advanced papers on this. Try 
searching for “characterization of the convolution theorem.” You’ll find 
rigorous mathematical proofs that ultimately say the same thing: the convolution 
theorem is special to the Fourier transform.
But you don’t need pages of math to get the intuition. If a function keeps its 
shape through a system, and we can describe the system’s effect with a 
frequency-dependent multiplier, then that’s multiplication in the Fourier 
domain.
And if you're passionate about the math behind this, you could even write a 
short paper exploring this idea. I'd be happy to discuss it with you.
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Now let’s talk about another important result in Fourier analysis — Parseval’s 
Identity.
This identity says that the total energy of a signal, when measured in the time 
domain, is exactly equal to the total energy in the frequency domain. 
Mathematically, it's written as:#the integral of the square of the function f of 
t over all time, equals the integral of the square of its Fourier transform — f 
hat of s — over all frequencies.
Let me give you some intuition here.
Suppose you have a function, maybe it’s an electric signal or a sound wave. In 
the time domain, the quantity f of t squared represents the power of that signal 
at each instant. When you integrate this over time, you’re summing up all that 



power — you get the total energy.
Now, that same signal can be broken down into its frequency components using the 
Fourier transform. In that domain, each component has an amplitude, and squaring 
that amplitude gives you the energy associated with that frequency. Integrating 
over all frequencies gives you the total energy — again.
So Parseval’s Identity tells us something very beautiful: energy is conserved 
between the time domain and the frequency domain.
This has a strong connection to what you learned in physics. Think about 
alternating current. If you have a sinusoidal current flowing through a 
resistor, the instantaneous power is proportional to the current squared. And 
when you integrate that over time, you get the total energy consumed by the 
resistor.
Now, from a geometric perspective, you can think of f of t as a vector in an 
infinite-dimensional space. That sounds abstract, but it’s just like a regular 
vector — except with infinitely many components. And the length of this vector 
is found by summing up the square of each component — just like in ordinary 
geometry.
The Fourier transform is a kind of coordinate transformation — like a rotation 
of the space. So when we go from the time domain to the frequency domain, we’re 
rotating the vector. But that doesn’t change its length. So geometrically, 
Parseval’s Identity simply says: the length of the signal vector is preserved 
under the Fourier transform.
You can also prove this identity using standard calculus and the definition of 
the Fourier transform. And yes, that’s a good exercise. But I want you to also 
grasp the meaning behind it.
So next time you see this identity, remember — it’s not just a formula. It tells 
you that energy, or vector length, is preserved when moving between the time and 
frequency domains. And that is both physically and mathematically very powerful.
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So far, we’ve been talking about transformations in one dimension — mainly 
between time and frequency using the Fourier transform. But to truly understand 
what's going on, it helps to think geometrically.
Let’s start with something more familiar — a simple two-dimensional rotation.
Imagine we have a point in the 2D plane, described by coordinates x and y in a 
standard X Y coordinate system. Now, suppose we want to express this same point 
in a new coordinate system, X-prime and Y-prime, which is rotated by some angle 
phi from the original axes.
As the diagram shows, the new coordinates — x-prime and y-prime — can be 
computed from the original ones using the rotation formulas.
So x-prime equals x times cosine phi plus y times sine phi,#and y-prime equals 
negative x times sine phi plus y times cosine phi.
You can also write this transformation in matrix form. It’s a simple 2-by-2 
rotation matrix.
Now why is this relevant?
Because this kind of rotation is a basic example of an orthonormal 
transformation, just like the Fourier transform. When we rotate the coordinate 
system, we’re not changing the length of the vector — we’re just viewing it from 
a different angle. The structure stays the same, just expressed differently.
This gives us a visual and intuitive way to think about more abstract 
transformations. In higher dimensions — or even infinite dimensions — the 
concept is similar. We’re taking a function, representing it in a new coordinate 
system, and the transformation preserves important properties like length and 
energy.
That’s why understanding this simple 2D rotation helps us better appreciate what 
the Fourier transform is doing. It’s not magic — it’s geometry, just in a much 
bigger space.
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Now that we understand the Fourier transform in one dimension, let’s take it a 
step further — to two dimensions.
Just like in the 1D case, the idea is to take a function — in this case, a 
function of two variables, x and y — and express it in terms of its frequency 
content. But instead of waves traveling along a line, now we’re dealing with 



wave patterns that extend in all directions across a plane.
The 2D Fourier transform lets us analyze how these wave components — traveling 
in the x direction, the y direction, or even diagonally — contribute to the 
overall structure of the signal or image.
The formula here tells us how to compute the 2D Fourier transform. The function 
f of x and y is transformed into capital F of u and v, where u and v represent 
the spatial frequencies in the horizontal and vertical directions.
And just like before, there’s an inverse formula that lets us go back from the 
frequency domain to the original spatial domain.
Now, why is this so useful?
Because in many real-world applications — like medical imaging, computer vision, 
or signal processing — we deal with 2D data. Think of an image, for example. 
Each pixel represents a value at some x and y location. When we apply the 2D 
Fourier transform, we can analyze the texture, orientation, and frequency 
content of that image.
On the left side of the slide, we see a simple geometric object — like a bar. On 
the right is its 2D Fourier spectrum. Notice how the orientation of the object 
affects the direction of the frequency response.
So just like in one dimension, we’re decomposing a complex signal into simpler, 
sinusoidal components — but now in two dimensions. And that opens up a whole new 
world of possibilities.
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Let’s now look at a powerful application of the 2D Fourier transform — noise 
suppression.
Take a look at the image on the left. It’s a noisy version of a familiar test 
image — lots of random graininess, especially in the background and darker 
areas.
Now, if we perform a 2D Fourier transform — which we indicate here by "F T" — we 
move from the spatial domain to the frequency domain. The result is this bottom-
left image, which shows the frequency spectrum of the noisy image.
Notice something important: most of the meaningful image information is 
concentrated around the center, which corresponds to the low-frequency 
components. But the noise is spread out — especially toward the edges — as high-
frequency speckles.
And this gives us an idea.
What if we simply suppress or remove those high-frequency components? That’s 
what we’re doing on the bottom-right: we apply a mask — setting the noisy high-
frequency regions to zero, while keeping only the central, low-frequency region.
Then we perform the inverse Fourier transform — marked here as "I F T" — to 
convert back to the spatial domain.
And just like that, we get a much cleaner version of the original image. Most of 
the noise is gone, and the essential structure is preserved.
This is one of the key strengths of working in the frequency domain. Certain 
operations — like filtering or noise removal — can be done more easily, more 
effectively, and sometimes more intuitively after transformation.
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Let’s take this a step further and look at low-pass and high-pass filtering 
using the Fourier transform.
Start with the image on the far left — this is our original image of a building. 
Below it, you see the corresponding frequency spectrum. It contains both low-
frequency components, which encode smooth variations like brightness and 
shading, and high-frequency components, which capture edges and fine details.
Now look at the middle column.
Here, we’ve applied a low-pass filter. That means we kept only the low-frequency 
components — those near the center of the Fourier spectrum — and removed the 
rest. You can see the filtered spectrum just below. The result, shown in the 
middle image above, is a smoothed version of the original — the fine details are 
gone, and only the broad, soft structures remain.
Next, we move to the rightmost column.
This time we’ve done the opposite. We removed the low frequencies and kept only 
a selected band of high-frequency components. You can see that in the frequency 
plot — a ring where the center is zeroed out. The corresponding spatial image 



above now reveals only the edges — the sharp transitions in intensity.
So by simply choosing which frequency bands to preserve or remove, we can 
control the kind of information we keep — soft versus sharp, background versus 
boundary.
This is another powerful reason why we often work in the frequency domain — 
filtering becomes intuitive and flexible.
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Let’s now walk through an important example: the two-dimensional rectangle 
function, centered at the origin, with side lengths X and Y.
This function is quite simple in the spatial domain — it's just a bright 
rectangular block surrounded by zeros. But when we take its 2D Fourier 
transform, something fascinating happens.
The resulting function in the frequency domain is a product of two sinc 
functions — one in the u direction and one in the v direction. And remember, 
sinc functions come from the Fourier transform of a box function in one 
dimension. So when we go to two dimensions, the result is just a multiplication 
of two of them — one along each axis.
You can see this result visualized in the bottom right. There's a sharp peak in 
the center — that’s the low-frequency content — and then it decays with 
oscillations outward, characteristic of sinc behavior.
Now here’s something more interesting: when we move into higher dimensions, 
something new becomes possible — rotation. In 1D, you can only flip a signal 
left or right, but there's no true concept of rotation. However, in 2D or 3D, 
you can rotate the object, and that rotation affects the frequency domain in a 
meaningful way.
This rotational property is one of the key advantages of analyzing signals in 
higher dimensions. It allows us to understand and manipulate how orientation in 
space translates into patterns in frequency.
So this simple example — a rectangular function — gives us a powerful insight 
into the structure of Fourier transforms in two dimensions.
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Let’s talk about something elegant and powerful — the rotation property of the 
Fourier transform.
Here’s the idea: if you rotate a two-dimensional function in space, then its 
Fourier transform also rotates — by the exact same angle and in the same 
direction. That means the structure of the frequency content preserves the 
orientation of the original signal.
For instance, if you rotate an image by 30 degrees counterclockwise, the entire 
frequency spectrum also rotates by 30 degrees counterclockwise. The shape and 
the distribution of frequencies remain the same, just oriented differently. This 
behavior is not just limited to 2D — it holds in any number of dimensions.
Why does this happen? Well, it comes from the mathematics of how the Fourier 
transform is defined. If we apply a rotation matrix — let’s call it R theta — to 
the spatial variable, we see that the frequency variable ends up rotated in 
exactly the same way. It’s a symmetry property built into the transform itself.
Now, the proof is shown here, and you’re welcome to follow through it if you 
like. It involves a change of variables and some linear algebra, but the 
takeaway is beautifully simple: rotate the function, and its spectrum rotates 
too.
This rotational invariance is one of the reasons Fourier analysis is so useful 
in imaging, especially in applications like object detection, texture analysis, 
and pattern recognition — where orientation should not change the essential 
features.
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Let me now give you a more intuitive, geometric explanation for the rotation 
property of the Fourier transform.
Suppose you have a 2D function — like the white rectangular bar you see on the 
top-left image. This function has a certain frequency structure, and that’s 
captured in its Fourier transform, shown to the right.
Now, here’s the key idea: each point in the Fourier spectrum corresponds to a 
sinusoidal wave component — a wave moving in a specific direction and with a 



certain frequency. When you sum up all these wave components, you reconstruct 
the original image.
So what happens when we rotate the original function? Say we rotate it 45 
degrees counterclockwise. Well, to reconstruct this rotated function using the 
same wave-based approach, each of those original wave components must also 
rotate by the same 45 degrees. That’s the only way they’ll still combine to 
match the rotated shape.
As you can see in the second row, the rotated spatial function leads to a 
rotated frequency spectrum. Both are rotated by the same angle, preserving the 
overall structure. This is what we mean by the rotation property of the Fourier 
transform.
You can verify this rigorously with mathematics, but this geometric reasoning 
gives us an intuitive, visual understanding of what’s happening.
This is part of a much deeper concept: the duality of information. You can think 
of an image as made of individual points — pixels or voxels — or as made of 
sinusoids, each with different directions and frequencies. These two views are 
completely interchangeable, and Fourier analysis is the bridge between them.
That’s why this topic is so foundational. It’s not just about imaging. Fourier 
analysis underlies many areas — in physics, engineering, and even mathematics — 
wherever we want to understand structure in terms of frequency.
Now let’s take a moment to summarize what we’ve learned so far.
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Maybe you'll enjoy this little logo — it’s a compact way to capture the spirit 
of what we've been discussing.
On the left, we see the Greek letter delta. That symbolizes the delta function, 
which represents the particle-like, pointwise nature of signals — sharp, 
localized, discrete. It's our way of representing structure in the spatial or 
time domain.
Next to it is e to the power i-theta, a complex exponential. This captures the 
wave nature — smooth, oscillating, continuous. It represents sinusoids, and it's 
central to how we describe frequency, phase, rotation, and oscilation in the 
complex plane, describing wave propagation.
So together, delta and e to the i-theta — one representing particles, the other 
waves — form a kind of duality. And this duality runs throughout everything 
we’ve covered: convolution, linear systems, Fourier series, and Fourier 
transforms.
The real power of Fourier analysis is in how it unifies these two views. A 
signal can be described by where things happen — using delta functions — or by 
how things oscillate — using sinusoids. This interplay is what makes the field 
so rich and so widely applicable.
That’s why I like this little symbol. It’s simple, but it reflects deep ideas 
that are at the heart of signal processing and medical imaging.  We will 
understand this logo more and more as we unravel its meaning in this and next 
several lectures.
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Alright, to wrap up today’s session, here’s your homework assignment.
First, I’d like you to read about the uncertainty principle of the Fourier 
transform. This is a fascinating and important concept. Summarize it in your own 
words, but keep it concise — no more than three sentences.
Second, I want you to analytically compute the Fourier transform of this 
function: the exponential of b times t, multiplied by the step function u of 
negative t. Here, b is a positive constant, and u of t is defined as 1 for 
positive time and 0 otherwise.
The due date is one week from now, by midnight next Friday. Please make sure to 
upload your report to MLS.
And before we end, I’ve heard from a few students that the Fourier series 
material was a bit confusing. If that’s you, don’t hesitate — come talk to me 
now or reach out later. I’m happy to help clarify anything.
That’s all for today — thank you!


